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Abstract

The recent proposal (Planat and Kibler 2008 arXiv:0807.3650
[quant-ph]) of representing Clifford quantum gates in terms of unitary
reflections is revisited. In this communication, the geometry of a Clifford
group G is expressed as a BN-pair, i.e. a pair of subgroups B and N that
generate G, is such that intersection H = B ∩ N is normal in G, the group
W = N/H is a Coxeter group and two extra axioms are satisfied by the double
cosets acting on B. The BN-pair used in this decomposition relies on the
swap and match gates already introduced for classically simulating quantum
circuits (Jozsa and Miyake 2008 arXiv:0804.4050 [quant-ph]). The two- and
three-qubit cases are related to the configuration with 27 lines on a smooth
cubic surface.

PACS numbers: 03.67.Pp, 03.67.Lx, 02.20.−a, 03.65.Vf, 02.40.Dr

1. Introduction

Euclidean real reflection groups (Coxeter groups) are an important ingredient for representing
quantum computations [1]. Coxeter groups are finite sets of involutions and specific pairwise
relations. As a result, they provide a distinguished class of quantum Boolean functions [2]
possessing inherent crystallographic properties. But complex reflections are more appropriate
for modeling the Clifford unitaries. For instance, the single qubit Pauli group P1 (generated by
the ordinary Pauli spin matrices σx, σy and σz) is the imprimitive reflection group G(4, 2, 2).
Its normalizer in the unitary group U(2), the so-called Clifford group C1, is isomorphic (but is
not the same as) to the reflection group number 9 in the Shephard–Todd list [3]. The n-qubit
Clifford group Cn is the normalizer in U(2n) of the tensor product of n Pauli spin matrices [4].
It originally appeared in the context of doubly-even self-dual classical codes [5], where it was
discovered that the space of homogeneous invariants of Cn is spanned by the complex weight
enumerators of the codes. Group C2 contains a maximal subgroup (of half its size) which is
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the Shephard–Todd group number 31, but the connection to unitary reflection groups becomes
more tenuous as far as n � 3.

In this communication, we show that Clifford groups may be seen as aggregates of Coxeter
groups with the structure of BN-pairs, also named Tits systems. There is a compelling physical
connection of the BN-pair decomposition to swap and match gates introduced in the context
of classical simulations of quantum circuits [13]. The B group relies on the swap gates and
the local component of the n-qubit Clifford group Cn, while the N group relies on the match
gates and the topological component of Cn. It is also noticeable that such a construction also
vindicates a connection of the Clifford group geometry to smooth cubic surfaces, already
pointed out in our earlier work [1].

2. BN-pairs

Henceforth, G is a finite group, B and N two subgroups of G generating G,H = B ∩ N is
a normal subgroup of G and the quotient group W = N/H is generated by a set S ⊂ W of
order 2 elements (involutions). In the following section, we shall observe that such a pairing
easily follows from the structure of the Clifford group G ≡ Cn, when it is divided into its local
component, the local Clifford group B ≡ CL

n , and its topological component N ≡ Bn.
In 1962, Tits coined the concept of a BN-pair for characterizing groups resembling the

general linear group over a field [6–8]. A group G is said to have a BN-pair iff it is generated
as above and two extra relations (i) and (ii) are satisfied by the double cosets1

(i) For any s ∈ S and w ∈ W, sBw ⊆ (BwB) ∪ (BswB),

(ii) For any s ∈ S, sBs � B.

A particular example is G = GLn(K) (the general linear group over a field K). One takes
B to be the upper triangular matrices, H to be the diagonal matrices and N to be the matrices
with exactly one non-zero element in each row and column. There are n − 1 generators s,
represented by the matrices obtained by swapping two adjacent rows of a diagonal matrix.
More generally, any group of Lie type has the structure of a BN-pair, and BN-pairs can be
used to prove that most groups of Lie type are simple.

An important consequence of axioms (i) and (ii) is that the group G with a BN-pair may
be partitioned into the double cosets as G = BWB. The mapping from w to C(w) = BwB

is a bijection from W to the set B\G/B of double cosets of G along B [7].
Let us recall that a group W is a Coxeter group if it is finitely generated by a subset S ⊂ W

of involutions and pairwise relations

W = 〈s ∈ S|(ss ′)mss′ = 1〉,
where mss = 1 and mss ′ ∈ {2, 3, . . .} ∪ {∞} if s �= s ′. The pair (W, S) is a Coxeter system of
rank |S| equal to the number of generators.

The pair (W, S) arising from a BN-pair is a Coxeter system. Denoting ls(w) for the
smallest integer q � 0 such that w is a product of q elements of S, then (i) may be rewritten as
(a) if ls(sw) > ls(w) then C(sw) = C(s) ·C(w), (b) if ls(sw) < ls(w) then C(sw)∪C(w) =
C(s) · C(w). Such rules are the cell multiplication rules attached to the Bruhat–Tits cells

1 For G a group, and subgroups A and B of G, each double coset is of form AxB: it is an equivalence class for the
equivalence relation defined on G by

x ∼ y if there are a ∈ A and b ∈ B with axb = y.

Then G is partitioned into its (A, B) double cosets. Products of the type sBs in (i) make sense because W is an
equivalence class modulo H, and as a result is also a subset of G. More generally, for a subset S of W , the product
BSB denotes the coset union

⋃
s∈S BsB.

2



J. Phys. A: Math. Theor. 42 (2009) 042003 Fast Track Communication

BwB of the Bruhat–Tits decomposition (disjoint union) G = BWB = ⋃
w∈W BwB. Axiom

(ii) can be rewritten as (c) for any s ∈ S,C(s) · C(s) = B ∪ C(s) �= B.
Finally let us give the definition of a split BN-pair. It satisfies the two additional axioms

(iii) B = UH,

where U is a normal nilpotent subgroup of B such that U ∩ H = 1, and

(iv) H =
⋂
n∈N

nBn−1.

3. BN-pairs from the two-qubit Clifford group

Any action of a Pauli operator g ∈ Pn on an n-qubit state |ψ〉 can be stabilized by a unitary
gate U such that (UgU †)U |ψ〉 = U |ψ〉, with the condition UgU † ∈ Pn. The n-qubit Clifford
group (with matrix multiplication for group law) is defined as the normalizer of Pn in U(2n)

Cn = {U ∈ U(2n) | UPnU
† = Pn}.

In view of the relation U † = U−1 in the unitary group U(2n), normal subgroups of Clifford
groups are expected to play a leading role in the quantum error correction [1, 9]. Let us start
with the two-qubit Clifford group C2. The representation

C2 = 〈C1 ⊗ C1, CZ〉
(where CZ = diag(1, 1, 1,−1) is the ‘controlled-Z’ gate) naturally picks up the local Clifford
group

CL
2 = 〈C1 ⊗ C1〉 = 〈H ⊗ I, I ⊗ H,P ⊗ I, I ⊗ P 〉,

where the Hadamard gate H := 1/
√

2
(

1 1
1 −1

)
occurs in coding theory as the matrix of the

MacWilliams transform and the phase gate is P := (
1 0
0 i

)
. The weight enumerator of Type II

codes is invariant under the group of order 192 generated by P and H, that is C1 itself [11].
More generally the weight enumerator of genus n in 2n variables is invariant under the Clifford
group Cn [5]. The issue of efficient (classical) simulation of quantum circuits [13] as well as
the topological approach of quantum computation [13] suggests another decomposition of C2

in terms of the two-qubit gates

T :=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠ and R = 1/

√
2

⎛
⎜⎜⎝

1 0 0 1
0 1 −1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎟⎠ .

The action of gate T is a swap of the two input qubits. It is straightforward to check
another representation of the local Clifford group as

CL
2 = 〈H ⊗ H,H ⊗ P, T 〉.

The action of gate R is a maximal entanglement of the two input qubits. Gate R is
a match gate [13]. It also satisfies the Yang–Baxter equation (R ⊗ I )(I ⊗ R)(R ⊗ I ) =
(I ⊗ R)(R ⊗ I )(I ⊗ R) and plays a leading role in the topological approach of quantum
computation [13]. It was used in our earlier work to define the Bell group

B2 = 〈H ⊗ H,H ⊗ P,R〉.
Both groups CL

2 and B2 are subgroups of order 4608 (with index 20) and 15 360
(with index 6) of the Clifford group. The latter may be represented as C2 = 〈H ⊗ H,H ⊗
P, CZ〉.
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3.1. The search of the BN-pairs

Clearly, the Clifford group is generated by the local Clifford group CL
2 and Bell group B2.

Their intersection is the Pauli group P2, of order 64, that is isomorphic to the central product
E+

32 ∗ Z4 (where E+
32 is the extraspecial 2-group of order 32 and type +). The Pauli group

P2 is normal in the Clifford and Bell groups but neither of the quotient groups CL
2 /P2 and

B2/P2 ∼= Z2 × S5 is a Coxeter group, so that the pair
(
CL

2 ,B2
)

cannot be of the BN-type.
Let us search a BN-pair candidate by selecting the subgroup N ≡ B2 and reducing the

size of CL
2 to a subgroup B so that the intersection group H = N ∩ B is a subgroup of B and

N/H is a Coxeter group. One gets

B ∼= W(F4), N ≡ B2, H ≡ Z(B2) ∼= Z8 and W ∼= W(D5),

in which B is the unique subgroup of CL
2 which is both of order 1152 and isomorphic to the

Coxeter group W(F4) of type F4 (the symmetry group of the 24-cell), N is B2,H is the center
Z(B2) and W , of order 1920, is isomorphic to the Coxeter group W(D5) of type D5.

The above pair of groups is of the BN type seeing that conditions (i) and (ii) are satisfied.
Axiom (i) directly follows from the Coxeter group structure of W . For (ii), which is equivalent
to (c), it is enough to discover an element in the double coset C(s) which does not lie in group
B. Elements of the coset C(s) = BsB arise from elements of the coset CL

2 gCL
2 , g ∈ B2. The

latter coset contains the entangling match gate R′ = T RT , which lies in B2 but not in CL
2 .

Thus (c) is satisfied. The BN pair does not split because there is no normal subgroup of order
|B|/|H | = 144 within the group B.

3.2. A split BN-pair

A further structure may be displayed in the two-qubit Clifford group. Let us denote Ĝ

the central quotient of the derived subgroup of G. One immediately checks that Ĉ2 =〈
Ĉ(L)

2 , B̂2
〉 ∼= U6, B̂2 ∼= M20 and Ĉ(L)

2
∼= Ŵ (F4). Group U6 = Z4

2 � A6, of order 5760, appears
in several disguises. The full automorphism group of the Pauli group P2 possesses a derived
subgroup isomorphic to U6 (see relation (7) in [1]). Geometrically, it corresponds to the
stabilizer of a hexad in the Mathieu group M22 (see section 4.2 in [1]). Group M20 = Z4

2 �A5,
of order 960, is isomorphic to the derived subgroup of the imprimitive reflection group
G(2, 2, 5) (see section 3.5 in [1]). Incidentally, M20 is the smallest perfect group for which
the set of commutators departs from the commutator subgroup [9]. Remarkably, the group Ĉ2

forms the split BN-pair

B ≡ Ĉ(L)
2 , N ≡ B̂2, H ≡ P̃2 ∼= Z4

2, W ∼= A5, and U ∼= Z2
3.

4. BN-pairs from the three-qubit Clifford group

The local Clifford group

C(L)
3 = {C1 ⊗ C1 ⊗ C1}

and the three-qubit Bell group

B3 = 〈H ⊗ H ⊗ P,H ⊗ R,R ⊗ H 〉
are subgroups of index 6720 and 56, respectively, of the three-qubit Clifford group (of order
743 178 240). It may be generated as

C3 = 〈H ⊗ H ⊗ P,H ⊗ CZ, CZ ⊗ H 〉.
4
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The central quotients C̃3 and B̃3 may be expressed as semi-direct products

C̃3 = Z6
2 � W0′(E7) and B̃3 = Z6

2 � W ′(E6),

in which W ′(E7) ≡ Sp(6, 2) and W ′(E6) are the reflection groups of type E7 and E6,
respectively [1]. Following the intuition gained from the previous section, one immediately
gets the non-split2 BN-pair

B ≡ C̃(L)
3 , N ≡ B̃3, H ≡ P̃3 ∼= Z6

2, W ∼= W ′(E6) and C̃(L)
3

/
H ≡ V,

in which V ∼= S3
3 (S3 is the symmetric group on three letters).

4.1. BN-pairs and a smooth cubic surface

The occurrence of reflection groups W(F4) and W(D5) in the decomposition of the two-qubit
Clifford group, and of W(E6) in the decomposition of the three-qubit Clifford group can be
grasped in a different perspective from the structure of a smooth cubic surface S embedded into
the three-dimensional complex projective space P3(C) [14]. The surface contains a maximum
of 27 lines in general position and 45 sets of tritangent planes. The group of permutations of
the 27 lines is W(E6), the stabilizer of a line is W(D5) (observe that |W(E6)|/|W(D5)| = 27)
and the stabilizer of a tritangent plane is W(F4). Thus the BN-pairs happen to be reflected
into the geometry of such a cubic surface.

Other ‘coincidences’ occur as follows. The number 216 of pairs of skew lines of S equals
the cardinality of the quotient group V entering in the decomposition of C̃3. There are 36
double sixes, each one stabilized by the group g6 := A6 ·Z2

2 of order 1440 (the symbol . means
that the group extension does not split). The latter group can be displayed in the context of the
two-qubit Clifford group. Let us observe that the quotients of C2 and B2 by the Pauli group
P2 are isomorphic to g6 and g5 := A5 · Z2

2, respectively. For three-qubits, one checks that the
quotients of C3 and B3 by the Pauli group P3 are isomorphic to W(E7) and W(E6). Groups
W ′(E6),W(D5),W(F4) and g6, which correspond to the permutations of the 27 lines, the
stabilizer of a line, a tritangent plane and a double six, respectively, are among the six maximal
subgroups of W(E6). The remaining two are of order 1296 and index 40, corresponding to the
size of double cosets BwB,B ∼= W(F4) and w ∈ W ∼= W(D5), in the BN-pair decomposition
of the two-qubit Clifford group.

To conclude, a smooth cubic surface is a particular instance of a K3 surface, a concept
playing a founding role in string theory. Further work is necessary to explore the interface
between quantum computing, graded rings and K3 surfaces [15].
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